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Abstract. Given a bipartite graph G(V = (A ∪B), E) with n vertices
and m edges and a function b : V → Z+, a b-matching is a subset of edges
such that every vertex v ∈ V is incident to at most b(v) edges in the subset.
When we are also given edge weights, the Max Weight b-Matching problem
is to find a b-matching of maximum weight, which is a fundamental
combinatorial optimization problem with many applications. Extending
on the recent work of Zheng and Henzinger (IPCO, 2023) on standard
bipartite matching problems, we develop a simple auction algorithm to
approximately solve Max Weight b-Matching. Specifically, we present a
multiplicative auction algorithm that gives a (1 − ε)-approximation in
O(mε−1 log ε−1 log β) worst case time, where β the maximum b-value.
Although this is a log β factor greater than the current best approximation
algorithm by Huang and Pettie (Algorithmica, 2022), it is considerably
simpler to present, analyze, and implement.
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1 Introduction

Matching, also known as the assignment problem, in a bipartite graph is one of
the most fundamental discrete optimization problems, which is rich in theory,
algorithms, and applications. A weighted matching (also known as the linear
sum assignment problem) in a bipartite graph aims to find a pairing of vertices
between the partitions with the maximum sum of edge weights in the matching.
There are many classic applications of maximum weighted bipartite matchings
(MWM) in resource allocation and assignments [13,32], and we also observe many
emerging applications [1, 6, 16,18,33,36,42,44].

Classic exact algorithms for MWM include the celebrated primal-dual Hun-
garian algorithm [29, 35], which is expensive and has little to no parallelism.
Alternative approximate approaches include a class of algorithms called auction
algorithms [9, 10, 15], which treat the matching process as a welfare-maximizing
⋆ The manuscript is accepted as a refereed paper in the 2024 INFORMS Optimization

Society conference.
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allocation of objects to bidders, where objects and bidders are vertices in the
bipartitions of the graph. Auction algorithms assign prices to the objects and
let eligible bidders bid on objects with the maximum utility. The bidder outbids
any previous bids for the object making the previous bidder eligible again. By
formulating the bid values in a certain manner, the auction eventually terminates
at an equilibrium where all the bidders are approximately happy with the object
they win. Auction based approaches are easier to present, analyze, and implement
as they only involve performing a series of simple local updates with good empir-
ical performance [4, 39,40]. Often, the runtime complexity of the classic auction
algorithms is pseudo-polynomial as they depend on the maximum weight of the
graph. There is a renewed interest in auction algorithms focusing on improving
the runtime and developing algorithms in scalable computational models such as
distributed, streaming, and parallel models [5,30,45]. In particular, a recent result
of Zheng and Henzinger [45] shows a multiplicative auction algorithm achieving a
(1 − ε)-approximate matching in O(mε−1 log ε−1) time, which matches the more
complicated state-of-the-art algorithm of Duan and Pettie [17].

In this paper, our focus is on the bipartite b-matching problem, which gener-
alizes a matching by allowing each vertex v ∈ V to be incident to at most b(v)
edges in the matching. Weighted bipartite b-matchings (MWb-M) are particularly
suited for recommendation and assignment applications where multiple choices
are preferred. This naturally occurs in modern applications like movie recom-
mendations, route suggestions, and ad allocations. Consequently, MWb-M has
been used in protein structure alignment [28], computer vision [8], estimating
text similarity [37], reviewers assignment in peer-review systems [14,31,43], and
diverse assignment [2, 3]. Although MWb-M has been extensively explored in
different algorithmic paradigms, little is known in terms of auction algorithms.

To extend the auction paradigm to b-matchings, we must deal with the issue
of objects being matched to multiple bidders. Indeed, this breaks the analogy
of an auction, as it makes little sense for multiple people to win a single object.
To deal with this, we make a simple modification: instead of allowing up to b(j)
bidders to bid on and win a single object j, we create a set M(j) of b(j) identical
copies of j for bidders to bid on. Additionally, instead of an object j explicitly
maintaining a price, each copy of j maintains its own price. The auction now
works by matching bidders to copies of an object, potentially outbidding the
current match, and then updating the prices of the object copies.

Using this modification and adapting the multiplicative auction algorithm of
Zheng and Henzinger [45], we design an (1 − ε)-approximate auction algorithm
for MWb-M. In particular, we interpret the auction process for b-matching in a
primal-dual linear programming framework. In Section 4, we describe approximate
complementary slackness conditions and prove that any primal-dual variable
pairs that obey them have a desired approximation guarantee. In Section 5,
we present a (1 − ε)-approximation algorithm based on this analysis and the
modifications discussed earlier by extending the recent multiplicative auction
algorithm of Zheng and Henzinger [45] to MWb-M. The worst case running
time is shown as O(mε−1 log ε−1 log β), which is a log β factor greater than
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the running time of the state-of-the-art approximation algorithm by Huang
and Pettie [25] when restricted to bipartite graphs. While our algorithm has a
runtime dependence on β, it is reasonable to assume that β = O(1) for many
real-world applications. Also, the algorithm of Huang and Pettie [25] is relatively
complicated to analyze and implement even for bipartite graphs, as it is based on
the scaling framework [17,22]. In contrast, the multiplicative auction algorithm
we present is considerably simpler in both regards.

2 Preliminaries

Let G = (V = (A ∪ B) , E, w) be a simple undirected bipartite graph with bipar-
titions A and B, n := |V | vertices, m := |E| edges, and weights w : E → R≥0.
For a vertex v ∈ V , denote by deg(v) and N(v) the number of edges it is incident
to and its set of neighbors in G, respectively. For a subset of edges H ⊆ E,
let degH(v) denote the number of edges in H that v is incident to. We define
∆ := maxv∈V deg(v). Given a function b : V → Z+, a b-matching (also known as
f -matching or degree-constrained subgraph) is a subset of edges F ⊆ E such that
degF (v) ≤ b(v) for all v ∈ V , where we can assume without loss of generality
1 ≤ b(v) ≤ deg(v). We denote β := maxv∈V b(v). A vertex v is saturated by F if
degF (v) = b(v), and it is unsaturated by F if degF (v) < b(v). Additionally, we let
F (v) denote the set of vertices v is matched to under F . For a real-valued function
f defined on the elements of a set Y , we use the standard summing notation
f(Y ) :=

∑
y∈Y f(y). Without loss of generality, we assume b(A) ≤ b(B); thus the

size of any b-matching is at most b(A) ≤ b(V )
2 . The Max Weight b-Matching (MWb-

M) problem is to find a b-matching F that maximizes w(F ) given a weighted
bipartite graph G = (V = (A ∪ B) , E, w) and function b : V → Z+ as input.

3 Related Work

The auction approach for Max Weight Matching (MWM) can be attributed to
Demange et al. [15] and Bertsekas [9,10], who also extended it to the Assignment,
Transportation, and general network flow problems [11, 12]. Recently, Assadi
et al. [5] gave an auction algorithm for (1 − ε)-approximate Max Cardinality
Matching that yields algorithms in the semi-streaming [19] and MPC [26] models
of computation. Liu et al. [30] extended on this work to develop auction algorithms
for (1−ε)-approximate MWM and Max Cardinality b-Matching that work in various
scalable models of computation. We note that the algorithm of Liu et al. [30] is the
only auction approach for b-matching that we are aware of, and it works only for
the unweighted version of the problem. Additionally, Zheng and Henzinger [45]
developed multiplicative auction algorithms to give a O(mε−1 log ε−1) time
auction algorithm for (1 − ε)-approximate MWM.

Several algorithms for special cases of MWb-M exist. For integral edge weights,
Gabow and Tarjan [23] developed exact scaling algorithms by reducing to finding
a perfect b-matching on a bipartite multigraph, while Huang and Kavitha [24]
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give an exact O(b(V )1/2mW ) time algorithm by decomposing into W unweighted
subproblems. In general graphs, finding a max weight b-matching is also well
studied. Gabow [21] gave an exact O(b(V ) min{m log n, n2}) time algorithm.
Bayati et al. [7] proposed an exact algorithm based on belief propagation. Huang
and Pettie [25] presented a (1 − ε)-approximate scaling algorithm with running
time O(mα(m, n)ε−1 log ε−1), where α(m, n) is the inverse Ackermann function.
For bipartite graphs, the running time reduces to O(mε−1 log ε−1). There are also
several 1

2 and ( 2
3 −ε)-approximation algorithms designed for b-matching [27,34,38]

in the sequential and parallel models. Finding a max weight b-matching can also
be reduced to a standard matching problem [20,25,41]. However, the reduction is
not approximation preserving, and may drastically increase the size of the graph.

4 Primal-Dual Analysis for b-Matchings

Given a graph G = (V = (A ∪ B) , E, w), we refer to vertices in A as bidders and
vertices in B as objects. For each edge (i, j) ∈ E, define an indicator variable
x(i, j) ∈ {0, 1}. The LP-Relaxation of MWb-M and its dual are then given by

max
∑

(i,j)∈E

w(i, j)x(i, j)

s.t.
∑

j∈N(i)

x(i, j) ≤ b(i) ∀i ∈ A

∑
i∈N(j)

x(i, j) ≤ b(j) ∀j ∈ B

0 ≤ x(i, j) ≤ 1 ∀ (i, j) ∈ E.

min
∑
i∈A

b(i)π(i) +
∑
j∈B

b(j)p(j) +
∑

(i,j)∈E

z(i, j)

s.t. π(i) + p(j) + z(i, j) ≥ w(i, j) ∀(i, j) ∈ E

π(i) ≥ 0 ∀i ∈ A

p(j) ≥ 0 ∀j ∈ B

z(i, j) ≥ 0 ∀ (i, j) ∈ E.

The dual variables z are defined for every edge, while the dual variables π
and p are defined for vertices in A and B, respectively. We refer to the dual π(i)
for a bidder i as its profit and the dual p(j) for an object j as its price.

Property 1 (Complementary Slackness). Let x and (π, p, z) be feasible primal
and dual solutions, and let F be the b-matching induced by x. Then these are
optimal solutions if and only if the following conditions hold:

1) x(i, j) > 0 =⇒ π(i) + p(j) + z(i, j) = w(i, j) for all (i, j) ∈ E.
2) x(i, j) < 1 =⇒ z(i, j) = 0 for all (i, j) ∈ E.
3)

∑
j∈N(i) x(i, j) < b(i) =⇒ π(i) = 0 for all i ∈ A.

4)
∑

i∈N(j) x(i, j) < b(j) =⇒ p(j) = 0 for all j ∈ B.

The first two conditions can be restated as π(i) + p(j) ≤ w(i, j) if (i, j) ∈ F
and π(i) + p(j) ≥ w(i, j) if (i, j) /∈ F , respectively, while the last two conditions
indicate any unsaturated vertices have an optimal dual value of zero.

By Properties 1.1 and 1.2, maintaining the edge duals z is redundant as their min-
imizing value can be given explicitly by z(i, j) = max {w(i, j) − π(i) − p(j), 0}.
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We can also partially restate the conditions for all (i, j) ∈ F as

w(i, j) − p(j) ≥ π(i) ≥ max
{

max
k∈N(i)\F (i)

{w(i, k) − p(k)} , 0
}

, (1)

where F (i) is the set of objects i is matched to under F . The upper and lower
bound on π(i) follows from the slackness condition when (i, j) ∈ F and when
(i, j) /∈ F , respectively, along with the non-negativity constraints of the dual
variables. Additionally, owing to Property 1.3, if a bidder i is unsaturated in an
optimal solution, then π(i) = 0 which implies maxk∈N(i)\F (i) {w(i, k) − p(k)} ≤ 0.
Hence, if we are given some arbitrary prices p, a feasible value of π respecting
Property 1 is implicitly given by the lower bound of Eq. (1).

This motivates the naive auction based approach, where both the primal and
dual problems are simultaneously solved, but only the primal and price variables
are maintained explicitly. Consider a set of matched edges F and prices p. Eq. (1)
motivates the construction of F and p such that every edge (i, j) ∈ F satisfies

w(i, j) − p(j) ≥ max
{

max
k∈N(i)\F (i)

{w(i, k) − p(k)} , 0
}

=: π(i).

We call such an edge happy. For a bidder i, if all edges (i, j) ∈ F are happy and
either i is saturated by F and π(i) ≥ 0 or i is unsaturated by F and π(i) = 0, then
we also call i happy. If all bidders are happy under F , then F is also happy. If F
is happy, a feasible b-matching, and together with prices p satisfies Property 1.4
(i.e. unsaturated objects have a dual value of zero), then it must be optimal since
it satisfies every condition of Property 1.

4.1 ε-Happiness

We can relax the notion of happiness to an approximate sense by maintaining
some multiplicative slack (1 − ε) for some ε > 0.

Definition 1 (ε-Happiness). For F ⊆ E and prices p, an edge (i, j) ∈ F is
ε-happy if

w(i, j) − p(j) ≥ max
{

max
k∈N(i)\F (i)

{(1 − ε)w(i, k) − p(k)} , 0
}

=: π(i).

A bidder i is ε-happy if all edges (i, j) ∈ F are ε-happy and either i is saturated
by F and π(i) ≥ 0 or i is unsaturated by F and π(i) = 0.

Note that F being ε-happy satisfies Property 1.3. If F is ε-happy, a feasible
b-matching, and together with prices p satisfies Property 1.4, then its weight
falls within a (1 − ε) factor of the max weight b-matching. To show this, we
use a lemma from Huang and Pettie [25] which follows from simple primal-dual
arguments. We note that the original lemma is for b-matchings in general graphs,
but we specialize it for bipartite graphs and our notation here.
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v1

v2

v3

v4

v5

b(v1) = 1

b(v2) = 2

b(v3) = 2

Bidders

b(v4) = 2

b(v5) = 3

Objects

(a) The original graph.

v1 v4 v41
v42

v5 v51 v52 v53v2

v3

b(v1) = 1

b(v2) = 2

b(v3) = 2

Bidders Objects Object Copies

M(v4)

M(v5)

(b) Adding copies of objects.

Fig. 1: The set of copies associated with each object are given by dashed boxes.
During the auction process, bidders bid on and increase the price of a specific
copy of an object in order to match to it.

Lemma 1 ( [25, Lemma 5]). Let F be a b-matching and π, p the dual variables
for vertices in A and B, respectively. If all unsaturated vertices have dual values
of zero, each unmatched edge (i, j) /∈ F satisfies π(i) + p(j) ≥ (1 − δ1)w(i, j),
and each matched edge (i, j) ∈ F satisfies π(i) + p(j) ≤ (1 + δ2)w(i, j), then
w(F ) ≥ (1 − δ1)(1 + δ2)−1w(F ∗) where F ∗ is a max weight b-matching.

Lemma 2. Let F, p be some feasible b-matching and prices, respectively, such
that F is ε-happy and F, p satisfy Property 1.4. Then w(F ) ≥ (1 − ε)w(F ∗).

Proof. For (i, j) ∈ F , we have that π(i) + p(j) ≤ w(i, j) − p(j) + p(j) = w(i, j)
since (i, j) is ε-happy. For (i, j) /∈ F , we have that

π(i) + p(j) = max
{

max
k∈N(i)\F (i)

{(1 − ε)w(i, k) − p(k)} , 0
}

+ p(j)

≥ (1 − ε)w(i, j) − p(j) + p(j) = (1 − ε)w(i, j)

since i is ε-happy and j ∈ N(i) \ F (i). By Property 1.4 and F being ε-happy,
the dual values of unsaturated vertices are zero. The lemma follows by applying
Lemma 1 with δ1 = ε, δ2 = 0. ⊓⊔

5 A Multiplicative Auction Algorithm

The notion of ε-happiness gives us a framework to build an algorithm with
approximation guarantees as long as we can maintain that matched edges are
ε-happy. However, updating the prices of objects is non-trivial since an object
may be matched to multiple bidders, and updating the prices carelessly may
break ε-happiness for a matched edge. To resolve this, we introduce the idea of
object copies. Specifically, we associate each object j ∈ B with a set of object
copies M(j) = {c1, . . . , cb(j)}, where each object copy c ∈ M(j) maintains its
own price pj(c). When a bidder wants to match with an object j, it must choose
a specific object copy c ∈ M(j) to bid on and be assigned to. Note that an object
copy can be assigned to at most one bidder.
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We visualize the role of multiple copies of an object in our algorithm in
Figure 1. In this example, an eligible bidder, say v2, would search through the
copies of v4 and v5, and then bid on the ones that offer it the best utilities in
each. The other eligible bidders would work similarly, potentially outbidding and
unmatching someone else on the same object copy. This process continues until
an equilibrium is reached. This modification allows us to maintain the overall
auction process described for matching problems, with the only changes being
that bidders may now bid on multiple things and have to increase the price of a
specific copy of j instead of j directly to match to it. The addition of these object
copies motivates a slight change to ε-happiness, which we call strong ε-happiness.

Definition 2 (Strong ε-Happiness). For F ⊆ E and prices for each object,
an edge (i, j) ∈ F , where i is assigned to c ∈ M(j), is strongly ε-happy if,

w(i, j) − pj(c) ≥ max
{

max
k∈N(i)\F (i), l∈M(k)

{(1 − ε)w(i, k) − pk(l)} , 0
}

=: π(i).

We can also show that strong ε-happiness implies ε-happiness if we set the
price of an object j as the minimum of the prices of its object copies.

Proposition 1. Let F be strongly ε-happy. If we set p(j) = minc∈M(j){pj(c)}
as the price for each object j ∈ B, then F is ε-happy.

Proof. Consider an edge (i, j) ∈ F , where i is assigned to c ∈ M(j). Then,

w(i, j) − p(j) ≥ w(i, j) − pj(c) ≥ max
{

max
k∈N(i)\F (i), l∈M(k)

{(1 − ε)w(i, k) − pk(l)} , 0
}

= max
{

max
k∈N(i)\F (i)

{(1 − ε)w(i, k) − p(k)} , 0
}

where the last equality follows from the fact that

(1−ε)w(i, k)−p(k) = (1−ε)w(i, k)− min
l∈M(k)

pk(l) = max
l∈M(k)

(1 − ε)w(i, k) − pk(l),

for all objects k ∈ N(i).

We now describe our algorithm that adapts the multiplicative auction algo-
rithm of Zheng and Henzinger [45] to b-matchings.

5.1 Weight Preprocessing

We first pre-process the edge weights as described in [45]. If we are given an
approximate parameter ε′ ∈ (0, 1), we can afford to round and scale the edge
weights since we are seeking a (1 − ε′)-approximate solution. We remove any edge
of weight less than ε′

b(V ) W since including 1
2 b(V ) such edges in a b-matching4

4 Note that the size of any b-matching is upper bounded by b(A) ≤ 1
2 b(V )
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would not even add ε′

2 W ≤ ε′

2 w(F ∗) to its weight. Hence, we can scale the
original weights by 1

ε′W b(V ) so that the maximum edge weight is b(V )
ε′ and the

minimum edge weight is at least 1. We slightly abuse notation and denote these
pre-processed edge weights with the function w. Next, we round down the weights
to the nearest integer power of (1 + ε), where ε = 1

2 ε′. To do this, we define
iLog(x) = ⌊log1+ε(x)⌋ and the new weights as w̃(i, j) = (1 + ε)iLog(w(i,j)) for
each edge (i, j) ∈ E. We remark that finding a (1 − ε)-approximate solution with
respect to w̃ gives a (1 − ε′)-approximate solution with respect to w.

Proposition 2. Let w and w̃ be the weights before and after rounding. To find
a (1 − ε′)-approximate solution with respect to w, it suffices to find a (1 − ε)-
approximate solution with respect to w̃.

Proof. Note that (1+ε)−1w(i, j) < w̃(i, j) ≤ w(i, j) by definition of the rounding.
If F ∗ and F̃ ∗ are optimal solutions with respect to w and w̃ and F a (1 − ε)-
approximate solution with respect to w̃, then

w(F ) ≥ w̃(F ) ≥ (1 − ε)w̃(F̃ ∗) ≥ (1 − ε)w̃(F ∗) >
1 − ε

1 + ε
w(F ∗) ≥ (1 − 2ε)w(F ∗).

Since ε = ε′
/2, we get that w(F ) ≥ (1 − ε′)w(F ∗). ⊓⊔

We also take note of two important integers when rounding, smax = iLog(W ) =
iLog(b(V )/2ε) = O(ε−1 log(b(V )ε−1)) and smin, the smallest integer such that
(1+ε)−smin ≤ ε. A simple analysis shown in [45] gives that smin = Θ(ε−1 log ε−1).

5.2 The Algorithm

We present the pseudocode of our algorithm in Algorithm 1. For each object
j ∈ B, we initialize its set of copies and set their prices to zero. For each bidder
i ∈ A, we build a queue Qi that contains pairs of the form (r, (i, j)) for each
j ∈ N(i) and each integer index rij − smin ≤ r ≤ rij = iLog(w(i, j)), where the
pairs in Qi are ordered in non-increasing order based on the index r starting from
the top of the queue. To efficiently build the queues, we sort the pairs associated
with all the edges using a global bucket sort (lines 8 to 12). With this, we can
populate Qi for each i ∈ A by going through the indices in decreasing order and
inserting any relevant pairs (lines 13 to 15). We also maintain for each i ∈ A an
integer ri corresponding to the most recent popped index from Qi.

We maintain a list I of bidders that are not strongly ε-happy. While this list is
not empty, we remove a bidder i from it and call the function AssignAndBid(i).
This function pops pairs from Qi until it saturates i or empties Qi and along
the way matches to certain objects. More accurately, suppose a pair (r, (i, j)) is
popped. If (i, j) /∈ F , then i will attempt to match with the cheapest object copy
c ∈ M(j) given that w̃(i, j) − pj(c) is above a certain threshold. This threshold
guarantees that matching to j is a “safe” choice, and we do not have to worry
about a better choice coming up later in the queue. If i is matched to c, we add
the tuple ⟨j, c⟩ to a temporary list T and update the b-matching F to indicate
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Algorithm 1 Multiplicative Auction
Input: G = (V = (A ∪B) , E),
weights w̃ : E → R≥0, vertex capaci-
ties b : V → Z+, and ε ∈ (0, 1

2 )
Output: A set of edges F such that
F is a strongly ε-happy b-matching

1: I ← A, F ← ∅
2: ri ← 0, Qi ← ∅ for all i ∈ A
3: Lr ← ∅ for all r from smax to −smin
4: for j ∈ B do
5: M(j)←

{
c1, . . . , cb(j)

}
6: pj(c)← 0 for all c ∈M(j)
7: // Initialization Phase
8: for (i, j) ∈ E do
9: rij ← iLog(w̃(i, j))

10: ri ← max{ri, rij}
11: for r from rij to rij − smin do
12: Lr ← Lr ∪ (r, (i, j))
13: for r from smax to −smin do
14: for (r, (i, j)) ∈ Lr do
15: Qi.push((r, (i, j)))
16: // Auction Phase
17: while I ̸= ∅ do
18: Choose some i ∈ I
19: AssignAndBid(i)
20: return F

21: procedure AssignAndBid(i)
22: T ← ∅ // Temporary List
23: while Qi ̸= ∅ and |F (i)| < b(i) do
24: (r, (i, j))← Qi.pop(), ri ← r
25: if j ∈ F (i) then
26: Let c ∈M(j) be the object

copy i is assigned to
27: if w̃(i, j)− pj(c) ≥ (1 + ε)r

then
28: T ← T ∪ {⟨j, c⟩}
29: else
30: c← arg minc′∈M(j) pj(c′)
31: if w̃(i, j)− pj(c) ≥ (1 + ε)r

then
32: Match(i, ⟨j, c⟩), T ← T ∪

{⟨j, c⟩}
33: for ⟨j, c⟩ ∈ T do
34: γi,c ← w̃(i, j)−pj(c)−(1−ε)(1+

ε)ri+1 // Bid value
35: pj(c)← pj(c) + γi,c

36: I ← I \ {i}
37: procedure Match(i, ⟨j, c⟩)
38: if c is already assigned to another

bidder y ̸= i then
39: F ← F \ {(y, j)}
40: if Qy ̸= ∅ then I ← I ∪ {y}
41: F ← F ∪ {(i, j)}

this. If c was previously assigned to some other bidder y, we remove the relevant
edge from F and add y back to I if Qy ̸= ∅ as it may not be strongly ε-happy.
Otherwise, if (i, j) ∈ F , where i is assigned to c ∈ M(j), we add the tuple ⟨j, c⟩
to T if the value w̃(i, j) − pj(c) is also above a certain threshold. Once i becomes
saturated or Qi is empty, we calculate bids for all the tuples in T based on
the current ri value and perform a price update on all the chosen object copies.
Finally, we can remove i from I as we can show it is strongly ε-happy.

5.3 Invariants and Analysis

Throughout the runtime of the algorithm, we maintain the following invariants.

Invariant 1. Fix any i ∈ A. For all k ∈ N(i) \ F (i) and l ∈ M(k), w̃(i, k) −
pk(l) < max{(1 + ε)ri+1, (1 + ε)rik−smin}.

Proof. This is true at the start since F = ∅, ri = maxj∈N(i){iLog(w̃(i, j))}, and
all object copy prices are set to zero so w̃(i, j) − pj(c) = w̃(i, j) < (1 + ε)ri+1 for
all j ∈ N(i) and c ∈ M(j). We show in Invariant 2 that throughout the algorithm



10 B. Samineni et al.

the prices of object copies are monotonically increasing. Thus, it suffices to show
the inequality holds whenever ri changes. Note that ri can only ever decrease. If
ri changes to some value r, then we can guarantee there exists no pairs (r′, (i, k))
where r′ ≥ r + 1 > r = ri and k ∈ N(i) \ F (i) in Qi as such pairs must have been
popped and discarded. Additionally, we can guarantee that a lower bound on
the indices of any pair popped for a specific k is rik − smin. Thus, there exists no
k ∈ N(i) \ F (i) and l ∈ M(k) with w̃(i, k) − pk(l) ≥ {(1 + ε)ri+1, (1 + ε)rik−smin}
by construction and hence the claim follows. ⊓⊔

Invariant 2. The prices of object copies are monotonically increasing.

Proof. Fix some bidder i. Suppose (r, (i, j)) was popped from Qi and i chooses
to add some tuple ⟨j, c⟩ to T . By construction, w̃(i, j) − pj(c) ≥ (1 + ε)r. Thus,

γi,c = w̃(i, j) − pj(c) − (1 − ε)(1 + ε)ri+1 ≥ (1 + ε)r − (1 − ε2)(1 + ε)ri > 0

where the last inequality follows from the fact that ri ≤ r. ⊓⊔

Invariant 3. At the end of a call to AssignAndBid(i), i is strongly ε-happy.

Proof. Consider a tuple ⟨j, c⟩ ∈ T during this iteration. Right before we updated
pj(c), Invariant 1 implies that for all k ∈ N(i)\F (i) and l ∈ M(k), w̃(i, k)−pk(l) <
max{(1 + ε)ri+1, (1 + ε)rik−smin}. Partition N(i) \ F (i) into the set of objects L1
that are less than the first argument of the max and the set L2 that are less than
the second argument. For k ∈ L2, we have that for all l ∈ M(k)

w̃(i, k) − pk(l) < (1 + ε)rik−smin ≤ ε(1 + ε)rik = εw̃(i, k),

which implies (1−ε)w̃(i, k)−pk(l) < 0. For k ∈ L1, we have that for all l ∈ M(k),

(1 − ε)w̃(i, k) − pk(l) < (1 − ε)(w̃(i, k) − pk(l)) < (1 − ε)(1 + ε)ri+1.

By construction of the bid, we have that w̃(i, j)−pj(c) = (1−ε)(1 +ε)ri+1. Thus

w̃(i, j) − pj(c) ≥ max
{

max
k∈N(i)\F (i), l∈M(k)

{(1 − ε)w̃(i, k) − pk(l)}, 0
}

and the edge (i, j) is strongly ε-happy.
Now consider each edge (i, g), where i is assigned to h ∈ M(g), that was

already included in F at the start of the call but ⟨g, h⟩ /∈ T at the end of the call.
By the previous analysis, we know that when i last increased pg(h), the edge
(i, g) must have been strongly ε-happy. By Invariant 2 we know that the prices
of object copies are monotonically increasing throughout the algorithm, so the
edge (i, g) must still be strongly ε-happy.

If at the end of the call i is saturated, then i must be strongly ε-happy.
However, if i is unsaturated then it must be that Qi is empty. In this case for
each k ∈ N(i) \ F (i) it must be that the entry (rik − smin, (i, k)) must have been
popped from Qi, which indicates that for all l ∈ M(k),

w̃(i, k) − pk(l) < (1 + ε)rij−smin ≤ ε(1 + ε)rij = εw̃(i, k).

This gives (1−ε)w̃(i, k)−pk(l) < 0, so π(i) = 0 and i is still strongly ε-happy. ⊓⊔
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By Invariant 3, when Algorithm 1 terminates, the b-matching F returned
must be strongly ε-happy. Termination is guaranteed since for each bidder i ∈ A,
Qi is a fixed length and in case it is emptied, i must be strongly ε-happy. We
can also guarantee that if an object j ∈ B is unsaturated at termination, then
minc∈M(j) {pj(c)} = 0. If we set p(j) = minc∈M(j) {pj(c)}, using Proposition 1
and Lemma 2, F must be a (1 − ε)-approximate with respect to the weights w̃.
By Proposition 2, F is then (1 − ε′)-approximate with respect to w.

For runtime analysis, we divide the algorithm into two phases: initialization
and auction. The initialization phase populates Qi for each i ∈ A, which requires
bucket sorting msmin pairs and takes O(msmin+(smax+smin)) = O(mε−1 log ε−1)
time. The auction phase involves calls to AssignAndBid(i) for each i ∈ A, which
is dominated by the size of Qi and the time it takes to find a minimum price
object copy and update its price. If we use a min priority queue to maintain
an ordering of M(j) for each j ∈ B, where the price pj(c) of an object copy
c ∈ M(j) is its priority, then these operations takes O(1) and O(log β) time,
respectively. We may need to do a price update for each pair in Qi, so the total
amount of work done in all calls to AssignAndBid(i) is O(deg(i) smin log β).
Summing over all bidders i ∈ A, the total amount of work done in the auction
phase is O(msmin log β) = O(mε−1 log ε−1 log β). Since the weight preprocessing
described in Section 5.1 takes O(m) time, we have the following.

Theorem 1. There exists a multiplicative auction algorithm for MWb-M that
gives a (1 − ε)-approximate solution in O(mε−1 log ε−1 log β) time.

6 Conclusions

In this paper, we present a near-linear (1 − ε)-approximate multiplicative auction
algorithm for MWb-M. However, the algorithm’s runtime has a dependence on β,
the max b-value. While it is reasonable to assume β = O(1) in many practical
applications, a direction for further research would be to remove this dependence
on β to have runtime parity with the algorithm of Huang and Pettie [25].
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